Polymerisation of Tung Oil. VIII. Effects of Various Bitumens and Resins upon the Gelation of Tung Oil.

By Monzi TATIMORI.

(Received November 28, 1940.)

The insulating varnishes are made by cooking the mixture of drying oils, bitumens and resins, and their properties are affected eminently by the cooking process. As drying oils, tung oil is one of the most preferable. This paper deals with the results of the effects of various bitumens and resins upon the gelation of tung oil.

(I) Effects of Bitumens. The samples used have the following constants (Tables 1, 2).

Table 1. Constants of petroleum asphalts.

Kind of Asphalts	Penetration degree (25°C., 100g., 5 sec.)	Softening point (°C.) (Ball & ring method)
S-1	6.0	72.5
S-2	40.7	52.0
S-3	70.0	51.0
B-1	7.0	126.5
B-2	29.0	69.0
B-3	33.5	66.0

S: Straight asphalt
B: Blown asphalt

Table 2. Softening point of bitumens.

Names of bitumens	Softening point (°C.)
Gilsonite	150.5
Petroleum pitch	108.5
Stearin pitch	82.5
Mineral rubber	137.0
Coal tar pitch	121.0

The measuring methods were the same as those described in the previous reports, the determinations being carried out at 270°C. The relation between gelation time and percentage of petroleum asphalt added to tung oil is shown in Table 3.

Fig. 1 and Fig. 2 show the relation between reciprocals of gelation times (1/t) and percentages (x) of straight and blown asphalts added to tung oil.

As shown in these figures, the gelation of tung oil is promoted, when petroleum asphalt is added in an amount less than 10 percent.; but an addition of a larger amount of asphalt tends to prevent the gelation. This sort of inversion is a newly recognized fact. It seems that petroleum asphalt which has a lower softening point has somewhat greater retarding effect on the gelation.

Results with various bitumens are shown in the following.

The inversion was observed at 10% with samples containing gilsonite, mineral rubber, tar pitch, petroleum pitch, and at 25% with those containing stearin pitch.

Table 3. Gelation time of tung oil containing petroleum asphalts.

Kind of asphalts	Percent. of asphalt added (x)	Gelation time (sec.) (t)	$\frac{1}{t} \times 10^4$
S-1	0	938	10.66
	4.96	875	11.43
	9.96	866	11.55
	20.00	944	10.59
	29.82	1101	9.08
	39.90	1585	6.31
S-2	0	939	10.65
	5.00	881	11.35
	9.94	871	11.42
	19.96	973	10.28
	29.50	1228	8.14
	40.00	2398	4.17
S-3	0	937	10.67
	5.00	891	11.22
	9.82	907	11.03
	20.00	1014	9.86
	30.00	1208	8.28
	39.95	1766	5.66
	50.00	>3499	2.86>
B-1	0	938	10.66
	10	754	13.26
	20	799	12.52
	30	992	10.08
B-2	0	933	10.72
	10	798	12.53
	20	861	11.61
	30	1037	9.64
В-3	0	938	10.66
	10	861	11.62
	20	922	10.85
	30	1238	8.08

Kind of bitumens	x (%)	t (sec.)	Kind of bituments	x (%)	t (sec.)
Gilsonite	0	782	Coal tar pitch	0	904
	4.96	752		5.0 10.0	870 810
	10.80	771		14.9	836
	15.31	781		25.1 35.1	969 1148
	25.00	792		39.1	1140
	35.30	84 9	Q	^	770
	45.10	958	Stearin pitch	4.96	776 618
	54.80	1108		9.95 14.97	551 546
Mineral rubber	0	785		24.85 3 5 .0	543 566
	5.16	723		44.9 54.5	649 771

734

773

814

940

1056

1447

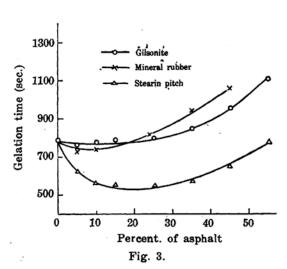

Petroleum pitch

Table 4. Gelation time of tung oil containing bitumens.

The relation between components of asphalt and the inversion. As shown above, every bitumen added in small amount to tung oil promotes the gelation, where when the added amount increases the effect is reversed, and it retards the gelation. This is a phenomenon which is not found in cases of fatty oils, fatty acids, hydrocarbons, etc.

In order to study the relation between components of asphalt and the inversion, following two experiments were undertaken.

The measurements were made with 15°- blown asphalt, which

9.94

15.56

24.00

35.18

45.00

55.00

was separated into two parts, soluble and insoluble in hot alcohol. For the purpose of separation, asphalt was heated with 94% alcohol for 5 hours at 120-130° under 7 atmospheric pressure, followed with renewal of alcohol, and heated again under the same conditions. By repeating this treatment four times, the asphalt was separated into soluble and insoluble parts.

5.0

10.0

15.0

25.0

35.0

920

764

736

755

761

947

Results obtained with soluble and insoluble parts are shown in Table 5.

85

15°-Blown asphalt	x (%)	t (sec.)	15°-Blown asphalt	x (%)	t (sec.)
Alcohol-insoluble part	0	871	Alcohol-soluble part	0	897
part	5.0	843	part	5.0	810
	9.97	809		10.0	800
	14.97	870		14.75	799
	20.0	919		23.60	833
	25.0	998		26.10	894
	30.0	1117		30.00	997

Table 5. Gelation time of tung oil containing 15°-blown asphalt.

The inversion occurs at 10% with tung oil containing alcohol-insoluble part of blown asphalt and at 15% with that containing alcohol-soluble part.

The components of asphalt are not well known at present, but it is generally accepted that asphalt is composed of petrolen and asphalten. A solution of 5 g. of 5°-blown asphalt in 25 c.c. benzene was poured into 200 c.c. benzine. The precipitate thus obtained was collected and dried to give asphalten, and the filtrate was evaporated to an oily substance,

Effects of the petrolen and asphalten upon gelation of tung oil were studied. Results with petrolen are given in Table 6.

Table 6. Gelation time of petrolen of 5°-blown asphalt.

x (%)	t (sec.)	$\frac{1}{t} \times 10^4$
0	917	10.91
5.0	1004	9.96
10.13	1181	8.47
15.0	1392	7.18
20.0	1826	5.48
24.93	2538	3.94
29.94	3671	2.72

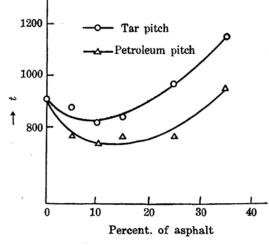


Fig. 4.

The inversion was not found in the experiments with petrolen. As in the case of fatty oils, 1/t and x were in a linear relation, and x_{∞} was 38.0%.

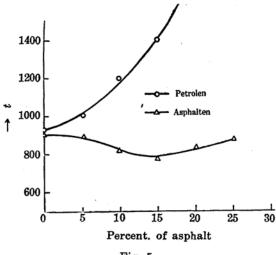


Table 7. Gelation time of tung oil containing asphalten of 5°-blown asphalt.

x (%)	t (sec.)
0	899
4.99	886
9.98	801
15.0	768
20.0	827
24.95	861

Fig. 5.

Results with asphalten are shown in Table 7. In this case the inversion occurred at 15%.

Of the substances reported only a-naphthol indicated the inversion. It can be anticipated that asphalten contains some substances giving a peculiar effect on tung oil.

(II) Effects of Various Resins. Next the effect of various natural and synthetic resins on gelation time of tung oil were examined. Acid values and iodine values of these resins are shown in Table 8.

Table 8.

Resin	Acid value	Iodine value
Copal	134	120.7
Dammar	31.2	83.5
Amber	20.5	61.4
Mastic gum	56.7	124.0
Sandarac gum	134	101.9
Rosin	132.4	130.9
Ester rosin	35.0	115.8
Tamanol No. 125 L	17.8	80.1
Super becacite	28.1	52.7
Bakelite resin No. 254	47.5	66.3
Leuchtol	4.7	55.1
Phthalate resin	7.6	80.4
Coumarone resin	0.5	31.8
Hitachi oil soluble resin	21.4	79.8

Each of these resins was pulverized, weighed, and put into test tubes and suitable quantities of tung oil were added; measurement was carried out at $270\,^{\circ}$ C. in every case.

The gelation times in second were shown in Table 9.

Table 9.

Kind of Resins and Remarks	Addition x (%)	t (sec.)	$\frac{1}{t} \times 10^4$
(1) Copal: An approximately linear relation is found between $1/t$ and x and the value of x_{∞} is 91.5% .	0 4.98 10 0 15.1 20.1 25.1 30.0	803 891 936 999 1073 1142	12.45 11.22 10.68 10.00 9.32 8.75 7.97
(2) Dammar: The result is similar to that of copal and the value of x_{∞} is 67%.	0	791	12.64
	4.99	857	11.67
	9.95	928	10.77
	14.9	1019	9.81
	19.9	1120	8.98
	24.95	1265	7.91
	30.0	1445	6.92
(3) Amber: The general tendency is the same as the above two resins and x_{∞} is 62.5%.	0	882	11.34
	4.97	935	10.70
	10.0	1029	9.27
	15.0	1141	8.76
	19.9	1313	7.62
	24.9	1503	6.65
	29.9	1658	6.03
(4) Mastic gum: A slightly curved line is obtained, x_{∞} being 62.5%.	0	879	11.38
	5.36	954	10.48
	10.3	1016	9.84
	14.9	1111	9.00
	19.9	1259	7.94
	24.9	1430	6.99
	30.0	1693	5.91
(5) Sandarac gum: The value of x _∞ is approximately estimated to 87%.	0	892	11.21
	5.0	952	10.51
	10.0	988	10.12
	15.0	1084	9.22
	20.0	1118	8.95
	25.0	1228	8.14
	30.0	1394	7.17
(6) Coumarone resin: A straight line is obtained, x_{∞} being 64.5%.	0	843	11.86
	4.99	924	10.82
	10.53	1004	9 96
	14.94	1088	9.19
	19.89	1173	8.52
	25.15	1382	7.23
	31.2	1661	6.02
(7) Ester rosin: A curved line is obtained and x_{∞} is 42%.	0	889	11.25
	4.98	947	10.56
	9.96	1002	9.98
	15.0	1114	8.98
	20.0	1358	7.36
	25.0	1661	6.02
	30.0	2742	3.65

Table 9.—(Concluded)

Kind of Resins and Remarks	Addition x (%)	t (sec.)	$\frac{1}{t} \times 10^4$
(8) Tamanol 125 L:	0	917	10.91
1/t and x bear an irregular			
relation, this may be	5.11	927	10.79
probably due to the less	10.0	956	10.46
soluble nature of the	13.88	972	10.29
resin in tung oil and	20.0	1060	9.43
the value of x_{∞} estimat-	25.0	1120	8.93
ed is 120% .	30.0	1265	8.58
(9) Super beckacite:	4.98	909	10.98
A glightly goldtion of	9.90	953	10.49
A slightly gelation-ac-	14.94	932	10.74
celerating action is ob-	19.84	904	11.06
served.	23.97	866	11.55
•	29.46	798	12.53
(10) Fhthalate resin:	4.90	923	10.83
A curved line is obtained	10.0	948	10.55
and the value of x_{∞} is	14.59	978	10.22
	19.92	1034	9.67
less than 60%.	25.00	1055	9.48
	29.64	1128	8.87
(11) Leuchtol:	5.0	928	10.78
The gelation-preventing	9.83	1062	9.42
action is very strong	14.74	1554	6.43
and the value of x_{∞} is approximately 22%.	20.0	3642	2.74
(12) Bakelite resin No. 254:	0	848	
An irregular relation, pro-	5.0	809	
hable due to ita lee-	9.84	751	
bably due to its less	14.76	742	
soluble nature in tung	19.92	72 8	
oil, is obtained.	24.5	761	
	30.0	848	
(13) Oil soluble phenol-	0_	882	
formaldehyde resin made	4.6	866	
by Hitachi Works:	9.8	889	
Mha manula in Alan sansa aa	14.9	938	
The result is the same as	19.7	922	
above.	24.0	942	
	29.7	988	

(14) Rosin:

In order to find the gelation-retarding effect of rosin the following experiments were carried out.

Table 10. Gelation time at 250°C.

x (%)	t (sec.)	$\frac{1}{t} \times 10^4$	$\frac{1}{x} \left(\frac{1}{t_0} - \frac{1}{t} \right) \times 10^4$
0 5 10 15 20 25	$1910 \ (t_0)$ 1954 2095 2301 2582 3120	5.236 5.118 4.773 4.346 3.873 3.205	0.0256 0.0463 0.0593 0.0682 0.0812

Table 11. Gelation time at 260°C.

x (%)	t (sec.)	$\frac{1}{t} \times 10^4$	$\frac{1}{x}\left(\frac{1}{t_0}-\frac{1}{t}\right)\times 10^4$
0	1324	7.553	_
5	1366	7.321	0.0044
10	1460	6.849	0.0704
15	1563	6.277	0.0857
20	2039	4.904	0.1325
25	3030	3.300	0.1701

Table 12. Gelation time at 270°C.

x (%)	t (sec.)	$\frac{1}{t} \times 10^4$	$\frac{1}{x} \left(\frac{1}{t_0} - \frac{1}{t} \right) \times 10^4$
0	955	10.47	
5	985	10.17	0.060
10	1066	9.38	0.109
15	1250	8.00	0.164
20	1598	6.26	0.210
25	3025<	_	

Table 13. Gelation time at 290°C.

t (sec.)	$\frac{1}{t} \times 10^4$	$\frac{1}{x}\left(\frac{1}{t_0}-\frac{1}{t}\right)\times 10^4$
441	22.68	·_
491	20.37	0.462
574	17.42	0.526
753	13.28	0.621
1371	7.29	0.769
3720<	2.69>	0.800<
	491 574 753 1371	491 20.37 574 17.42 753 13.28 1371 7.29

Table 14. Gelation time at 300°C.

x (%)	t (sec.)	$\frac{1}{t} \times 10^4$	$\frac{1}{x} \left(\frac{1}{t_0} - \frac{1}{t} \right) \times 10^4$
0 .	365	27.4	_
5	397	25.2	0.442
10	510	19.6	0.779
15	703	14.2	0.878
20	2203	4.54	1.143
25	4800<	2.08	

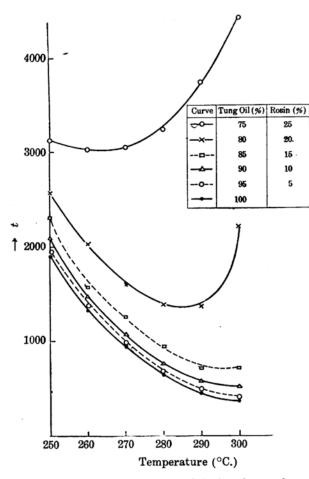


Fig. 6. Relation between Gelation-time and Temperature

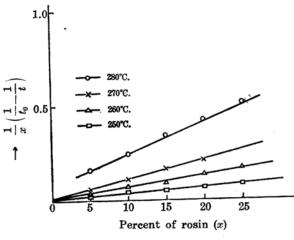


Fig. 7.

The relations between gelation time and temperature are shown in Fig. 6.

The general tendency is the same as that of fatty acid.

The relations between $\frac{1}{x} \left(\frac{1}{t_0} - \frac{1}{t} \right)$ and x are shown in Fig. 7.

From Fig. 7 it is noticed that the reciprocals of gelation time (1/t) may be expressed by the quadratic equation of x.

Summary.

- Studies on the (1)effects of straight asblown asphalts, phalts. gilsonite, petroleum pitch, stearin pitch, mineral rubber, coaltar pitch, etc. on the gelation time of tung oil lead to the conclusions that the gelation is promoted with bitumen added in an amount less than 10-15 percent., but is prevented with an addition of larger amount of bitu-The inversion was noticed as the amount of substances added increase.
- (2) Petroleum asphalt with a lower softening point has a somewhat greater gelation preventing effect.
- (3) 15° blown asphalt was separated into alcohol soluble and insoluble parts. As in the case of the original asphalt, the inversion was found in the experiments with the soluble and insoluble parts.

- (4) 5° blown asphalt was separated into asphalten and petrolen, and effects on gelation were studied. As in the case of ordinary neutral substances, the linear relation of 1/t and x was observed in the experiments with petrolen, but as in the case with original asphalt, the inversion was noticed when asphalten was used.
- (5) The gelation-retarding effects of various natural and synthetic resins were observed. Among them copal, dammar, amber, coumarone resin have retarding effects, and 1/t and x bear a linear relation.

The relation 1/t and x for mastic, leuchtol, phthalate resin, ester rosin, sandarac, tamanol are not linear.

Generally speaking, the relations of 1/t and x for neutral and soluble resins are linear, but those of the less soluble resins are not linear.

About the effect of rosin upon gelation of tung oil, many measurements were carried out and the relation of 1/t and x are shown to be expressed by a quadratic equation. The influence of temperature on the gelation times of tung oil mixed with rosin is similar to that of fatty acid.

In conclusion, the author wishes to express his sincere thanks to Dr. K. Baba, Dr. T. Yosioka, and Mr. Yokota for their kind guidance.

Laboratory of Hitachi Works, Hitachi Ltd.